Tuesday, June 4, 2019

Simulation Of Inmarsat C Channels Using Matlab

Simulation Of Inmarsat C Channels Using MatlabThis report is individu everyy(prenominal) about Inmarsat-c transmit its standards and simulation of C points using matlab. The use of transmits for control, command, communications and navigation is an atomic number 18a of high end technology which has grown signifi coffin nailtly over the last decade and been primarily dominate by the military. The establishment of roving airs is offering ply to the national and commercial fleet operators the opportunity to take advantage of these developments. This communication enchant implements Global marine Distress and Safety System and entropy transfer functions between INMARSAT-C compatible terminal and a priming coat commonwealth dumbfound. Compatible softw ar, inst wholly in alled on embedded egressment controller is employ for simulation of Inmarsat terminal. This controller transfer data to simulated Inmarsat broadcast using a wireless transmission ne twainrk. The air functions are apply into another embedded carcass controller. This satellite communication controller is subsumeed with Inmarsat terminal via wireless transmission profits and with another land landed estate station using a hourary wireless melodic line. The land nation station is software implemented in a PC linked with simulated satellite using a wireless entanglement. This center is able to manage communicates received from Inmarsat terminal, via simulated satellite, and convert them into short text messages, automatically delivered to local mesh workstations, in faxes format or mail messages. The system behind be consists as prow for a GMDSS simulator.2. INTRODUCTIONInmarsat is an international organization which works for the satellite system for the support of sprightly communication system. Another major function performed by this organization is radio determination ope order. The organization provides this radio determination service by dint of out the world according to the necessity of certain area in the whole world. The organization was established in 1979 and now comprises 56 member countries and since 1982 it has operated a global network of L-band satellites. These services were earlier provided for ships, then the after certain cartridge clip passed and new technology grew this service was excessively provided for the aircraft and now, according to the recent recipe the land users of smooth rouse also get the service throughout the world.In the report software algorithms for the inmarsat C seams modulators and demodulators is discussed. Normally Sophisticated algorithms, including a fast Fourier transform (FFT)-based intermit acquisition algorithm, carrier phase tracker, an innovative Doppler tracker, and acquisition symbol synchronizer, are developed and extensively simulated for reliable burst answer. The compact digital orient processor (DSP)-based demodulator hardware uses a unique personal computer test inter face for downloading test data files.Inmarsat provides services according to established international standards which enables the mobile to roam and operate throughout the world. But the criterion is the international licensing requirements should be strictly followed in the applicable regions. This amour is very beneficial for the user as the servicing terminal is global and the operating address could be saved. Another important perspective regarding this service is for manufacturer point of view that manufacturers can build large market and great number of users and the production cost of equipment could be reduced to the minimum extent.The Inmarsat Standards System has located its foundation stone into the land mobile communications. Equipment is now being produced by m both manufacturers throughout the world to technical standards introduced by IMWRSAT. This does not slow up innovative design or applications but take cares that all manufacturers of equipment operate cost -efficiently through the satellites and fixed res publica stations which provide access from the mobile to public and private telecommunications networks. Pre- useable services started in 989 in the Atlantic Ocean and are being expanded to the Pacific in the latter off make up ones mind of the year. The system is giving the users and manufacturers and opportunity to experience with the system throughout most of the world prior to full global commercial service which would be use globally at very frequent rate. The actual range of Standard-C facilities includes two ways of storing the messages and in the leading the data messaging as short burst of data.Todays fleet operators are lining increasing competition and a plethora of legislation which regulates their industry. It has therefore become essential that the truck operator be able to maximize the utility of the fomite and drivers hours while staying within the law. This requires careful real-time fleet management which is an area where recent developments in on-board computer systems, vehicle navigation system, personal computers, reliable mobile telecommunications and fleet management software now provide the operator with the required tools at an affordable price.Throughout the world, truck owners face the same problems in maximize the earning potential of the vehicle whenever it is on the road. In same countries return loads are not allowed to be carried by foreign vehicles while in others, companies pay off it difficult to identify potential burdenes. While the former may take time to overcome, the latter is now being addressed in many countries with cargo brokers and clearing houses operating data bases which show what cargoes are available and their destination. With many trucks still being owner operated, services such as these are promising to assume even greater importance as competitive market forces increase.The mergence of reliable navigation and communications systems throughout the wo rld is now making it operable for the truck operator to implement real-time fleet management solutions which will significantly improve his efficiency and profitability in the 1990s. In particular, the introduction of mobile satellite communications will integrate the truck and office and grow the truck an integral part of the companies manageable assets.3. BASIC DETAILS air is essentially any object that revolves around a planet in an elliptical or circular or procedure. Natural satellite of earth is moon. Else there are also the manmade artificial satellites orbiting around the earth. These satellites are very help full in resolving many issues and provide great technological benefits for human beings on the earth.The room which a satellite usually follows is called an orbit. In the orbit, the farthest away point from Earth is the apogee, and the closest point is the perigee.Artificial satellites generally are not voltaic pile produced. Most satellites are custom built to per form their intended functions. Exceptions include the GPS satellites and the Iridium satellites.Satellites consume to have certain ways of communication with Earth.Satellite need to get tuition and transmit the information it collects.It can relay information sent to it to another site on Earth. This is generally done using some(a) slip of antenna.The information is catching using radio waves that move at the speed of light, this method allows for very fast communications. solely satellites must have a means of storing and analyzing the data collected, and ways of controlling its various systems.The satellite subsystem that completes this role is called telemetry tracking and control.Telemetry tracking and Control is the main part or central part of the satellite and its operating system.It stores both activity of the satellite and receives information from the ground station, takes care of any general thing the satellite needs to doTelemetry Tracking and Control is made up of three components Telemetry, Tracking, and ControlEvery satellite needs a source of powerFactors to consider are cost, durability, and effectiveness.Satellites use up a lot of electricity both(prenominal) possible power sources for satellites include Solar panels Batteries , Nuclear power and Heat generators4. INMARSATSince 1982 INMARSAT has been providing high quality service of hold dial telephony to the oceanic community throughout the world, 24 hours a day. In February of this year British Airways began providing similar services to aircraft crossing the North Atlantic. By the end of 1989 aeronautical data and voice services will be available world childlike on many airlines for public calling and airline operational requirements.Following the mobile reallocation of the L-band spectrum in October 1987 an Extraordinary session of the INMRSAT Assembly in January 1989 approved further enhancement to INMRSATs convention to provide land mobile communication services.Now, with the s tart of pre-operational Standard service, is poised to bring the benefits of satellite communications to all land mobile users throughout the world who have reason to move around beyond cellular or F3R coverage.Today, INMARSAT is the only organization with a space segment role to provide land mobile satellite communication services throughout the world. It is therefore in a unique position to rapidly respond to the needs of user community and to provide services giving both(prenominal) public and private closed user separate access. In anticipation of these recent developments INMARSAT has, during the past year conducted an extensive series of trials and demonstrations of a low cost data and messaging service. These took place in East and West Europe, Australia and North America, and conclusively showed that the INWRSAT Standard C system is externally reliable and suited for land mobile use under all types of conditions and in all terrains.5. STANDARD SATTELITE COMMUNICATION SYST EMThe general system design meets the goals of standardized system. Elements and details of this overall communication system described below5.1. COMSAt the remote site COMS is a low-power DC computer, INMARSAT-C radio, and independent power system in a maven package. A message can be sent via INMARSAT-C to or from any device on the local-area network. COMS simply act as a filter, rejecting any packets that are not correct. GPS time messages are available from the INMARSAT- c radio, and COMS broadcast regular time packets onto the local area network.5.2. Local Area Network.An EIA485 1ocal area network provides a simple digital communication link to elements of the ARCS. The LAN is reliable, low power, and noise immune.5.3. MACSThe monitor and control system is a low power DC computer, battle array platform and independent power system in a single package. MACS collect hourly averaged scientific data from the DMS and utility data from the node data units then sends out the coded G OES data message. Monitor and control system can also send the same diagnostic data via INMARSAT if GOES is unavailable. It monitors van status and generates demoralize messages. Monitor and control system has the ability to collect data sets from some instruments in the event the DMS is not operating.5.4. DMSThe data management system is the data army workhorse for ARCS. It is a highly reliable implementation of a Sun workstation with copious tape recording capability. All elements of the DMs are redundant, including the processors.5.5. NDuThe node data units are niggling micro-power data collection devices that are put in the network as required throughout the ARCS system. They perform monitor and control tasks on command and instill certain alarm messages. One NDU is located in each sea container.5.6. COMSATCOMSAT is a U.S. service provider for the INMARSAT satellite system. Messages can be transmitted to the ARCS in several different ways(a) Direct transmission from an INMA RSAT-c radio(b) dial-up service to COMSAT(c) Internet email service provided by COMSAT.5.7. ARCS Base StationThe ARCS communication base station is a multi-tasking computer that performs several tasks(a) Monitor INMARSAT message traffic.(b) Provide an operator interface for sending control commands to the remote sites.(c) Routinely dial up and collect GOES data and forward them on to analysis sites.(d) Send alarm announcements when emergency messages are received.6. STANDARD C SYSTEMThe INMARSAT C system is the satellite system which usually provides two-way data communications from any place in the world. INMARSAT C terminals are very simple, cost effective and small in size to install any where at any point for example on vehicle ,air craft and easy to hand carry from one place to another place. Communications via the INMARSAT C system are usually data or could be message based. Any information that can be encoded into data bits could be transmitted using the INMARSAT C system. An y kind of Messages whether short or long are transferred from C terminal at information rate of 600 bits per sec. Frequencies are from 1626.5 MHz to 1645.5 MHz for the transmit, and 1530.0-1545.0 MHz for the receiving. C system is available in all four satellites of INMARSAT and its coverage area is from all oceans through 40 or more earth stations. A NCS in each region controls communications traffic. All INMARSAT maritime systems make use of 2-digit codes to facilitate transmission and reception of various types of maritime information.The typical INMARSAT C mobile earth station has a small omni-directional antenna. Antenna light weight and simplicity make it well mounted on any place. Directional antennas are available which could be installed in fixed and movable modes. The main electronics unit is nearly 3 kg. Briefcase type terminals are available also and give benefit to international business travelers and field operators. Network architecture is shown below.Figure 1 . Netw ork ArchitectureSome terminals have facility of built-in message preparation and display. Other terminals have serial port so that users can link their own personal computers or any other equipment for data transmission and reception. The power requirements of C terminals are good and can be easily achieved from battery and other resources. More than snow different terminal models made by nearly 40 manufacturers are now approved to operate with C system.Communication system using a cost effective mobile earth station suitable for installation and use on any type and size of mobile platform. The system is providing two way messaging service and data communications on a store and forward strategy, one way position and data polling and enhanced group Call broadcast service able to address both groups and specific geographic areas.The system interconnects with both Public and Private Networks to provide International, Regional or National services. The store and forward feature enables the system to interconnect with any terrestrial message or data network.To keep the mobile equipment low be and to minimize a very low G/T of -23dB/k at 50 elevations was selected to permit the use of a non-stabilized, unidirectional antenna. BPSK modulation is used and this coupled with the relatively low EIRP requirement of l2dBw can be achieved with a class HPA using existing semiconductors. To alleviate the effects of multi-path propagation on a very low gain antenna it was necessary to design a highly robust modulation and coding scheme. Transmissions frame the mobile take place between 1626.5 1646.5 M k and reception between 1530.0- 1545.0 MHz with tuning increments of 5 KHz. Standard C is therefore able to operate throughout all frequencies available on INMARSATs existing and next contemporaries satellites which are already assign for Land Mobile use. The narrow channel spacing also helps ensure maximum efficiency in the use of limited spectrum.The system has been design ed with considerable flexibility in the access control and planetary house communications protocols so that it can speak future new services and applications. The all digital design enables any type of data to be passed through the traffic channels collect to the transparent nature of the transmission medium.Current INMARSAT satellites have global beams providing coverage of about 1/3 the earth surface and to satisfy the design link budget requires a relatively high satellite EIRP of 21dbW is used. Third generation satellites now being specified will have spot beams and the Standard C system will be able to automatically identify the appropriate beam. Because of the high power requirements the forward carriers operate in a demand assigned mode when network conditions require. In addition the store and forward mode ensures maximum loading of the carriers at any give time which results in a highly cost effective service and mode of operation.Network Coordination StationEach Satell ite Network Region is served by an NJS which manages central resources such as traffic channels for demand assigned operation together with signaling and traffic control. Each NJS transmits a NJS communication signal which is received by all MESs when the message transfer is not occurring. The Communication Channel is used to announce calls to mobiles waiting at the LESS, for broadcasting E messages and at various stages for protocol signaling packet transfer.Land Earth StationsEach LES serves as a gateway between the ground network and INMARSAT Standard communications and network system. The different types of interface provided at the LES are decided by the earth station operator however, Telex and E message processing are mandatory. All mobile earth stations that are active in the network region are required to register with the Key. The copy of the list of registered mobile earth stations are held at each LES and used as a reason for accepting or rejecting calls originating from the terrestrial network. In addition the location of every registered mobile earth station is held at the LES so that calls received at the LES for mobile earth stations that is on another ocean region can be redirected and the will call not be lost.Figure 2. SES Example7. BENEFITS AND APPLICATIONS7.1. ENHANCED GROUP CALLINMARSAT C terminals can receive multiple numbers game of address messages known EGC. A specific header is inserted to the text to reference the group of mobiles and direct to the area for which the message is sent. Enhanced Group Calls can be transmitted in variety of languages and alphabets.There are two main types of Enhanced Group CallsSafetyNETIt provides an efficient and cost effective means of transmitting maritime safety and security information to vessels at sea and it is normally facilitated for different search and rescue coastguard co-ordination authorities. Short messages can be directed to mobiles and from mobile to any approaching specific regions.F leetNETIt allows information to be sent to a virtually limitless number of mobile terminals simultaneously which are pre-designated. It is highly recommended for use by services specializing in the advertisement of news, reports and any other information regarding roads and ports.7.2. SERVICESIn bidirectional messaging INMARSAT C system can handle messages up to 32 kilo bytes in space. Every message from a mobile earth station is transmitted in data packets through satellite to a land earth station, where it is re-assembled and then sent to the final addressee via the local and international telecommunications networks. On the other side in the reverse direction callers can send messages to a single mobile earth station or to a group of mobile earth stations.7.3. Data reporting and pollingMany INMARSAT C system users need to acquire information from vehicles to cross-examine automatic data collection platforms at fixed or variable intervals.Data reporting allows the transmission of packets containing information of 32 bytes on request or on the base of pre-arranged intervals. On the other side polling allows the user base to interrogate a mobile earth station at any point of time, generating automatic transmission of the required information.7.4. POSITION REPORTINGINMARSAT C terminals can be connected with a wide range of navigation systems to provide a highly consistent, 24 hours position reporting capability. Position data can be derived from the earth based efficient systems and satellite based position fixing systems as global positioning system.7.5. Distress alertingIn the event of emergency threat alerting equipment gives the signal. The equipment is inclined with Maritime INMARSAT C terminals. An emergency signal is automatically generated and information in distress alert signal contains position and any other information to a rescue coordination centre.7.6. INTERNET EMAILMost land earth stations offer internet electronic using the INMARSAT C service .7.7. APPLICATIONSINMARSAT C is used in the road transports fishing boats, land mobile and aeronautical military aircraft, helicopters and also used by news agency members, international business travelers and people doing work for aid collection and for remote monitoring plus data collection.8. STANDARD-C CHANNELS8.1. GeneralDifferent types of channels are used in INMARSAT standard C system. The channels are usually used not only in direct way communication from shore to ship but also inter-station cogitate from shore to shore are used for network control process and monitoring.8.2. NCS Common ChannelThe Network co-ordination station channel is a common channel which is time division multiplexed carrier transmitted continuously by the Network co-ordination station to all Satellite earth stations in the ocean region. Satellite earth stations tune to the Network control signal common channel when they are not operating. The channel operates on 1200 symbols per second with frame len gth of fixed standard of 8.64s. The information is encoded at half rate convolution and interleaved on a frame to frame base. Data rate is therefore 600 bits per seconds and all messages and signaling information is transferred in the form of packets. In each one of the frame total of 639 bytes are available for packets. The very first packet in each frame is board packet. After this packet number of signaling channel descriptor packets are transferred which are used to transfer information concerning satellite earth station usage of the signaling channels associated with that TDM carrier.8.3. CES TDM ChannelThe forward link is used with the help of CES TDM channel when the CES is communicating with a satellite earth station. The structure of CES TDM is similar to the Network co-ordination station common channel described in details above, and is used for carrying out call set up signaling shore-to-ship message and acknowledgement messages and call clear down signaling. A CES can op erate more than one CES Time division multiplexing channel and every channel is demand assigned by the NCS.8.4. SES sign of the zodiac ChannelThe Satellite earth station signaling channels associated with each forward time division multiplexing channel are received both by the network control stations and by the CES mainly for signaling from the Satellite earth station to the shore stations. adit by Satellite earth stations to a Satellite earth station signaling channel is done with the help of algorithm known as slotted ALOHA scheme and the addition of one mechanism over it is reservation of slots in the channel. If more than one Satellite earth station transmits the data at the same slot collision occurs as seen at the receiving CES. To reduce the time elapsed before Satellite earth station is aware that its transmission is unsuccessful. Signaling channel descriptor packet in the forward time division multiplexed indicates the current status of all slots associated with that sig naling channel. Slot timing is based on the time division multiplexed frame of 8.64s.Fourteen slots are allocated for the time of one data frame and 28 slots for future generation satellites. Any kind of instruction which is to be transmitted in any slot is scrambled and half rate convolution encoded. The transmission rate is 600 symbols per second for current generation satellites and 1200 symbols per second for future generation satellites. Burst 120 information bits could be adjusted in one slot. The bursts do not contain acquisition preamble which are transmitted in the slots. This thing helps to maximize the signaling channel capacity.8.5. SES MESSAGE CHANNELSatellite earth station message channels are used by Satellite earth stations to transmit their messages to the chosen control earth satiations. Satellite earth station signaling channel is used in the call setup phase, but the message itself is sent on Satellite earth station message channel assigned by the control earth station. Access to the channel by Satellite earth stations is on a time division multiple accesses. The destination control earth satiations instructs each Satellite earth station to wait for the proper time to transmit, the time at which it can start transmitting. Once assigned a start time Satellite earth station will transmit its entire message without interruption. Any Information which is to be sent is formatted into fixed packets with fixed size and placed into the frames. Different frame sizes are available although the size is fixed for a particular transmission. Frame can contain between one and five packets depending on its size. Each packet contains 127 bytes of information. Frames are scrambled, at half rate convolution and interleaved. A preamble is added before transmission. Transmission rate is only 600 symbols for current generation satellites and it will reach to 200 symbols per second for future satellites.8.6. Inter-station LinksControl earth stations offering C s ervices have bidirectional links with the network control signal of the same region. This type of link is used to transfer announcements and Enhanced Group Calls messages from a Control earth station to the network control signal for the subsequent transmission on the network control signal common channel. In addition, signaling is shared on this link to make sure synchronization of access to Satellite earth stations and for the allocation of Control earth stations time division multiplexed channels by the network control signal. The transmission rate is 1200 bits in one second with no geological fault correction techniques are employed.8.7. Inter-Region LinkEach network control signal is linked to the other Network control signals by inter region link channel. Mainly this channel is used to update other regions of any fitting process by Satellite earth stations in a particular region. Automatic dial-up voice band data channels is used by this link over the public switched telepho ne network. These links operate at 600 bits per second, using CCITT V22 full duplex modems.9. CHANNEL CHARACTERISTICS9.1. Link Budget ConsiderationsThe surgical operation of popular analogue data links is specifically be for a specific threshold value at the receiver demodulator and the link accessibility is defined as the %age of time that certain threshold value is likely to be achieved. Standard C uses ARQ technique to re-transmit error packets. Due to this reason changes in demodulator do not affect the standard quality of the received message but it affects only the counts of re-transmissions indispensable to make sure that the complete message can be decoded without error at the receiver.In order to reduce the loading on the satellite the sum of energy per message transfer effect must be reduce to limited extent. The forward link is more critical in terms of satellite resources and power reduction for this will raze the demodulator receiver and the error rate for the pac kets will increase. Therefore more repeat packets will be required and result will be satellite capacity utilization. And all this is because of extra total message energy required in transmitting the repeat packets. Over this the drawback one additionally drawback is the time needed to complete the message transfer would increase.For best satellite capacity operation the satellite power should adjusted such a level that the sum of all message energy could be minimized. For this practice one forward TDM may serve many satellite earth stations and the power could be set to ensure a distribution of rate of error in packet across the satellite earth station population.9.2. Signal Processing FeaturesFor the forward error correction half rate convolution is used on all the channels. A relatively short length allows the usage of maximum likelihood decoding techniques which can provide power in the region of 5 dB gain in an un-faded link. Similarly as a baseline for perfect performance lim its, a decoder (Viterbi) has been assumed operating on three bit soft decision samples.A data bit going through the encoder is competent to influence group of 14 consecutive symbols and thats why the fading bandwidth is much less as compared with the actual data rate. All fourteen symbols could be bear on by a fade. Now for time division multiplexing and message channels encoded symbols are assembled in a block before its transmission. After that they are transmitted in a different order. This interleaving has great effect on signal transmission. This interleaving process spreads transmission of the fourteen symbols connected with a given data bit over entire length of time which is large as compared to the fade continuance.De-interleaving of the encoded symbols at the receiver side is used to convert successfully the long duration fades into the arbitrary noise which the decoder is capable to tackle because only 14 symbols could be corrupted due to a usual fade. The redundancy e stablished in to the transmitted symbol stream allows restoration of the original data. For the Satellite earth station signaling channel with burst mode, interleaving is not employed as the bursts are very short duration for any kind of major effect. Data scrambling is also used on all the channels and it is necessary to ensure overflowing symbol transitions for clock recovery on demodulator side.Each packet contains the 16-bit checksum field which is transmitted on any of the INMARSAT C channels. Then it follows de-interleaving, decoding and descrambling operations, on the receiver checksum is calculated for each packet in order to find if the packet has been received is free of error or not.Channel time is given in figure belowFigure 3. Channel time10. DEVELOPMENT TOOLS10.1. SimulationIn the simulation environment characteristics of the Standard-C system in respect of the channel environment and the protocols are used because the analysis by conventional techniques is not suitab le for examining the performance of system and many types of simulators have been used.Some of the simulations techniques and software programs are briefly described below1. Software program based on the TOPSIM language has been prepared to analyze the packet error rate in the forward and return links and the effect that various channel exhibit on performance.2. LOTUS 123 has been used for analyzing the effect of certain traffic loading on a given network configuration. Using this software the results have been very useful in showing the capacity of the network and delays expected under different scenarios.3. Simulator of exam demodulators is also there. This simulator allows the testing of demodulator functions in the multi-path fading conditions. Such kind of test equipment is not present in the market.4. HOCUS simul

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.